
1. Exercises from 4.3/4.4

Problem 1. (Folland 4.3.13) An example of a non-integrable function of two variables

• Theorem 4.21 says that if S is measurable, and f : R2 → R is bounded, and discontinuous on

a set with zero content, then f is integrable on S.

• This example is intended to illustrate that if f is not bounded but all the rest of the conditions

are satisfied, f can fail to be integrable

• We define f : R2 → R by the following:

f(x, y) =


y−2 0 < x < y < 1

−x−2 0 < y < x < 1

0 otherwise

Claim 1 : Pick any y0 ∈ (0, 1), then f(x, y0) is integrable as a function of x.

f(x, y0) =



0 x = 0

y−20 0 < x < y0

0 x = y0

−x−2 y0 < x < 1

0 x = 1

• f(x, y0) is bounded because y0 6= 0

• f(x, y0) is discontinuous at 3 points, which is a set of zero content

• [0, 1] is measurable because its boundary has zero content

• These three facts imply (via Thm. 4.21) that f(x, y0) is integrable as a function of x

• The same argument shows that f(x0, y) is integrable as a function of y on each x0-slice.

Claim 2 : f(x, y) is not integrable on S

• If f were integrable on S, then by Fubini’s theorem, we could evaluate the double integral of f

over S by doing the iterated integrals in either order.

• We will show that the answer of the iterated integral depends on whether we chose to integrate

x or y first; this would be a contradiction to Fubini’s theorem, so we conclude that f is not

integrable.

• If we integrate over x first, then∫ 1

0

(∫ y

0

y−2 dx+

∫ 1

y

−x−2 dx
)
dy =

∫ 1

0

1

y
+ 1− 1

y
dy = 1

• If we integrate over y first, then∫ 1

0

(∫ x

0

−x−2 dy +

∫ 1

x

y−2 dy

)
dx =

∫ 1

0

− 1

x
− 1 +

1

x
dx = −1

• Since the value of the integral depends on the order of integration, f(x, y) must be not integrable

on S.

Problem 2. (Folland 4.4.3) Find the volume of the region S, which is bounded by both the sphere

x2 + y2 + z2 = 1 and the cylinder x2 + y2 = 1

• Draw picture

• Decide on a coordinate system: S is symmetric under rotation about the z-axis, suggests to

use cylindrical coordinates

dV = r dr dθ dz
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2

• For z > 0, the sphere is given by z =
√

4− x2 − y2 =
√

4− r2. For z < 0, we have z =

−
√

4− r2.

• Find the limits of integration: We will integrate z-first, then r, then θ.

• Fix any value of r, θ in S, then the limits of integration in the z-direction are given where the

line parallel to the z-axis intersects the sphere.

• r varies between (0, 1)

• θ sweeps out the whole circle, θ ∈ (0, 2π)

• The volume is given by:

V (S) =
y

S

dV =

∫ 2π

0

∫ 1

0

∫ √4−r2

−
√
4−r2

r dz dr dθ

=

∫ 2π

0

∫ 1

0

r

(∫ √4−r2

−
√
4−r2

dz

)
dr dθ

=

∫ 2π

0

∫ 1

0

2r
√

4− r2 dr dθ

=

∫ 2π

0

∫ 1

0

√
4− u du dθ

=

∫ 2π

0

[
−2

3
(4− u)3/2

] ∣∣∣∣1
0

dθ

=

∫ 2π

0

(
16

3
− 2
√

3

)
dθ

= 4π

(
8

3
−
√

3

)
Problem 3. Evaluate

s
S

(x+ y)4(x− y)−5 dA when S is the square −1 ≤ x+ y ≤ 1, 1 ≤ x− y ≤ 3

• Draw a picture

• We will apply theorem 4.37: Let u = x + y and v = x − y. Notice that this actually gives us

A−1 because we have written (u, v) = A−1(x, y) instead of (x, y) = A(u, v).

detA−1 =

∣∣∣∣∣ 1 1

1 −1

∣∣∣∣∣ = −2 =⇒ |detA| = 1

2

• The region of integration in terms of the new coordinates is given by u = −1 . . . 1 and v = 1 . . . 3

• Now applying Thm. 4.37:
x

S

(x+ y)4(x− y)−5 dx dy = |detA|
∫
G−1(S)

u4v−5 du dv

=
1

2

(∫ 3

1

v−5 dv

)(∫ 1

−1
u4 du

)
=

1

2

(
−1

4

(
3−4 − 1−4

))(1

5

(
15 − (−1)5

))
=

4

81

Problem 4. (Folland 4.4.13) Let S be the region in the first quadrant bounded by the curves xy = 1,

xy = 3, x2 − y2 = 1, and x2 − y2 = 4. Compute
s
S
x2 + y2 dA.

• Draw a picture

• We are going to apply Thm. 4.41. We use a change of coordinates u = xy and v = x2 − y2.
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• First compute the Jacobian of the transformation:

J−1 = |detDG−1| =

∣∣∣∣∣ y x

2x −2y

∣∣∣∣∣ = 2(x2 + y2)

• Therefore,

2(x2 + y2) dx dy = du dv

• We can now compute the integral:

x

S

x2 + y2 dx dy =

∫ 4

1

∫ 3

1

1

2
du dv = (3)(2)

1

2
= 3


