1. Exercises from 4.3/4.4

Problem 1. (Folland 4.3.13) An example of a non-integrable function of two variables

- Theorem 4.21 says that if S is measurable, and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is bounded, and discontinuous on a set with zero content, then f is integrable on S.
- This example is intended to illustrate that if f is not bounded but all the rest of the conditions are satisfied, f can fail to be integrable
- We define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by the following:

$$
f(x, y)=\left\{\begin{array}{cc}
y^{-2} & 0<x<y<1 \\
-x^{-2} & 0<y<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Claim 1: Pick any $y_{0} \in(0,1)$, then $f\left(x, y_{0}\right)$ is integrable as a function of x.

$$
f\left(x, y_{0}\right)=\left\{\begin{array}{cc}
0 & x=0 \\
y_{0}^{-2} & 0<x<y_{0} \\
0 & x=y_{0} \\
-x^{-2} & y_{0}<x<1 \\
0 & x=1
\end{array}\right.
$$

- $f\left(x, y_{0}\right)$ is bounded because $y_{0} \neq 0$
- $f\left(x, y_{0}\right)$ is discontinuous at 3 points, which is a set of zero content
- $[0,1]$ is measurable because its boundary has zero content
- These three facts imply (via Thm. 4.21) that $f\left(x, y_{0}\right)$ is integrable as a function of x
- The same argument shows that $f\left(x_{0}, y\right)$ is integrable as a function of y on each x_{0}-slice.

Claim 2: $f(x, y)$ is not integrable on S

- If f were integrable on S, then by Fubini's theorem, we could evaluate the double integral of f over S by doing the iterated integrals in either order.
- We will show that the answer of the iterated integral depends on whether we chose to integrate x or y first; this would be a contradiction to Fubini's theorem, so we conclude that f is not integrable.
- If we integrate over x first, then

$$
\int_{0}^{1}\left(\int_{0}^{y} y^{-2} d x+\int_{y}^{1}-x^{-2} d x\right) d y=\int_{0}^{1} \frac{1}{y}+1-\frac{1}{y} d y=1
$$

- If we integrate over y first, then

$$
\int_{0}^{1}\left(\int_{0}^{x}-x^{-2} d y+\int_{x}^{1} y^{-2} d y\right) d x=\int_{0}^{1}-\frac{1}{x}-1+\frac{1}{x} d x=-1
$$

- Since the value of the integral depends on the order of integration, $f(x, y)$ must be not integrable on S.

Problem 2. (Folland 4.4.3) Find the volume of the region S, which is bounded by both the sphere $x^{2}+y^{2}+z^{2}=1$ and the cylinder $x^{2}+y^{2}=1$

- Draw picture
- Decide on a coordinate system: S is symmetric under rotation about the z-axis, suggests to use cylindrical coordinates

$$
d V=r d r d \theta d z
$$

- For $z>0$, the sphere is given by $z=\sqrt{4-x^{2}-y^{2}}=\sqrt{4-r^{2}}$. For $z<0$, we have $z=$ $-\sqrt{4-r^{2}}$.
- Find the limits of integration: We will integrate z-first, then r, then θ.
- Fix any value of r, θ in S, then the limits of integration in the z-direction are given where the line parallel to the z-axis intersects the sphere.
- r varies between $(0,1)$
- θ sweeps out the whole circle, $\theta \in(0,2 \pi)$
- The volume is given by:

$$
\begin{aligned}
V(S) & =\iiint_{S} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r\left(\int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} d z\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 2 r \sqrt{4-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4-u} d u d \theta \\
& =\left.\int_{0}^{2 \pi}\left[-\frac{2}{3}(4-u)^{3 / 2}\right]\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{16}{3}-2 \sqrt{3}\right) d \theta \\
& =4 \pi\left(\frac{8}{3}-\sqrt{3}\right)
\end{aligned}
$$

Problem 3. Evaluate $\iint_{S}(x+y)^{4}(x-y)^{-5} d A$ when S is the square $-1 \leq x+y \leq 1,1 \leq x-y \leq 3$

- Draw a picture
- We will apply theorem 4.37: Let $u=x+y$ and $v=x-y$. Notice that this actually gives us A^{-1} because we have written $(u, v)=A^{-1}(x, y)$ instead of $(x, y)=A(u, v)$.

$$
\operatorname{det} A^{-1}=\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|=-2 \Longrightarrow|\operatorname{det} A|=\frac{1}{2}
$$

- The region of integration in terms of the new coordinates is given by $u=-1 \ldots 1$ and $v=1 \ldots 3$
- Now applying Thm. 4.37:

$$
\begin{aligned}
\iint_{S}(x+y)^{4}(x-y)^{-5} d x d y & =|\operatorname{det} A| \int_{G^{-1}(S)} u^{4} v^{-5} d u d v \\
& =\frac{1}{2}\left(\int_{1}^{3} v^{-5} d v\right)\left(\int_{-1}^{1} u^{4} d u\right) \\
& =\frac{1}{2}\left(-\frac{1}{4}\left(3^{-4}-1^{-4}\right)\right)\left(\frac{1}{5}\left(1^{5}-(-1)^{5}\right)\right) \\
& =\frac{4}{81}
\end{aligned}
$$

Problem 4. (Folland 4.4.13) Let S be the region in the first quadrant bounded by the curves $x y=1$, $x y=3, x^{2}-y^{2}=1$, and $x^{2}-y^{2}=4$. Compute $\iint_{S} x^{2}+y^{2} d A$.

- Draw a picture
- We are going to apply Thm. 4.41. We use a change of coordinates $u=x y$ and $v=x^{2}-y^{2}$.
- First compute the Jacobian of the transformation:

$$
J^{-1}=\left|\operatorname{det} D G^{-1}\right|=\left|\begin{array}{cc}
y & x \\
2 x & -2 y
\end{array}\right|=2\left(x^{2}+y^{2}\right)
$$

- Therefore,

$$
2\left(x^{2}+y^{2}\right) d x d y=d u d v
$$

- We can now compute the integral:

$$
\iint_{S} x^{2}+y^{2} d x d y=\int_{1}^{4} \int_{1}^{3} \frac{1}{2} d u d v=(3)(2) \frac{1}{2}=3
$$

